

Antibody recognition of epitopes on wild-type and mutant β -(1 \rightarrow 4)-galactosyltransferase-1

Jeremy Keusch^{a,1}, George Panayotou^b, Martine Malissard^c, Eric G. Berger^c, Hubert E. Appert^d, Peter M. Lydyard^a, Peter J. Delves^{a,*}

^a Department of Immunology, University College London, London, W1P 6DB, UK

^b Ludwig Institute for Cancer Research, London, UK

^c Institute of Physiology, University of Zurich, Switzerland

^d Department of Surgery, Medical College of Ohio, Toledo, USA

Received 28 May 1998; accepted 14 September 1998

Abstract

The epitopes present on β -(1 \rightarrow 4)-galactosyltransferase-1 (β 4Gal-T1) have been explored using a panel of monoclonal antibodies (mAbs) raised against the soluble form of the human enzyme. Reactivity of the antibodies with site-specific and truncated mutants of human β 4Gal-T1 suggests the presence of a major immunogenic epitope cluster consisting of four epitopes within the stem region and mapping between amino acids 42 and 115. The catalytic activity of the enzyme is increased in the presence of stem region-specific antibody. Two of the epitopes were further localized to a region between amino acids 42 and 77, sequences which are not shared with the recently cloned β 4Gal-T2 and β 4Gal-T3 enzymes. An epitope located close to or within the catalytic domain is also identified, and the mAb to this region binds synergistically with antibodies to the stem region. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: Galactosyltransferase; Monoclonal antibodies; Golgi; Surface plasmon resonance; Glycosyltransferase; Synergistic antibody binding

1. Introduction

UDP-galactose: β -N-acetylglucosamine β -(1 \rightarrow 4)-galactosyltransferase (β 4Gal-T, EC 2.4.1.38/90),

one of a large number of glycosyltransferases involved in the biosynthesis of glycoconjugates, catalyses the transfer of galactose from UDP-galactose to non-reducing terminal N-acetylglucosamine (GlcNAc). The C-terminal globular catalytic domain of the enzyme is exposed to the lumen of the Golgi apparatus, this is followed by an extended stem region, a hydrophobic transmembrane domain and a short cytoplasmic tail. Human β 4Gal-T1 cDNA has been expressed in a variety of prokaryotic and eukaryotic systems including large-scale production in *Saccharomyces cerevisiae*, with the recombinant enzyme showing similar characteristics

Abbreviations: β 4Gal-T; UDP-galactose: β -N-acetylglucosamine β -(1 \rightarrow 4)-galactosyltransferase (β 4Gal-T, EC 2.4.1.38/90); rh β 4Gal-T1, recombinant human β 4Gal-T1; mAbs, monoclonal antibodies; GlcNAc, N-acetylglucosamine; PNPP, p-nitrophenyl phosphate; SPR, surface plasmon resonance

^{*}Corresponding author. Fax: +44-171-504-9357; e-mail: p.delves@ucl.ac.uk

¹Current address: Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA.

to the human milk β 4Gal-T [1–3]. Studies on β 4Gal-T1 gene knock-outs in mice suggested the existence of other β 4Gal-T genes [4,5], and additional human β 4Gal-T enzymes (designated β 4Gal-T2, β 4Gal-T3 and β 4Gal-T4) have very recently been cloned [6,7], although the fine specificity of each enzyme remains to be fully established. These developments suggest that much of the previously published data using or analyzing non-recombinant enzyme requires cautious interpretation, and to reflect this in the present publication we use the term β 4Gal-T1 only when referring to recombinant enzyme or information derived from nucleic acid-based analyses, otherwise the more general term β 4Gal-T is used.

There is a single N-linked glycosylation consensus sequence in human β 4Gal-T1. O-linked sugars have also been described in human milk β 4Gal-T, with blood group determinants expressed in accord with the blood types of the donors [8]. The function of the carbohydrates on β 4Gal-T is unknown. They may serve in the correct folding of β 4Gal-T1, as a lower expression was achieved with the non-glycosylated β 4Gal-T1 compared to its glycosylated form [3]. However, the carbohydrate moiety on β 4Gal-T has been shown not to be involved in its catalytic activity [9–11] or in the binding of the α -lactalbumin regulator protein [12] which modifies the enzyme to produce lactose synthase activity (EC 2.4.1.22).

The β 4Gal-T enzyme has been localized predominantly to the *trans* Golgi [13]. However, in some cells the β 4Gal-T distribution has been found to overlap into the *trans* Golgi network [14]. The soluble form of β 4Gal-T is derived from the membrane-bound enzyme by proteolytic cleavage [15,16]. Cleavage sites in human milk β 4Gal-T1 occur at amino acid 42 in the transmembrane/stem region junction [17] and at amino acid 77 in the stem region [18]. A soluble form of another galactosyltransferase, α 3Gal-T, has recently been shown to be functionally active inside the Golgi [19].

 β 4Gal-T has also been detected on the plasma membrane of certain cell types using biochemical and immunodetection techniques [20,21]. It is unlikely that either cell surface β 4Gal-T or extracellular soluble β 4Gal-T galactosylates structures in vivo as sufficient concentrations of UDP-galactose are unlikely to exist in the extracellular fluid. However, the β 4Gal-T has the potential to bind glycoconjugates terminating in GlcNAc and could therefore act as a lectin with other cell surface or

cell matrix molecules bearing the appropriate ligand [22]. Suggested functional roles for cell surface β 4Gal-T have included involvement in cell migration [20,23], developmental growth [24], neurite outgrowth [25] and signal transduction [26].

The substrate binding sites of β 4Gal-T1 are postulated to center around a hydrophobic pocket and include residues Tyr²⁸⁴, Tyr³⁰⁹ and Trp³¹⁰ involved in GlcNAc binding with Tyr³⁰⁹ additionally involved in the binding of UDP-galactose [10]. Further studies around this hydrophobic area identified Phe³⁰⁵, Pro³⁰⁶, Asn³⁰⁷ and Asn³⁰⁸ as contributing to the UDP-Gal binding site, though they did not affect the binding of Mn²⁺ [27].

In this study we have used four newly produced and characterized monoclonal antibodies (mAbs) recognizing human β 4Gal-T1, together with a previously characterized mAb, to define immunogenic epitopes on the enzyme.

2. Results

Production and characterization of the mAbs.— All four of the cloned hybridomas produced specifically for this study secreted approximately 10– $15 \,\mu \text{g/mL}$ specific antibody of the IgG1 κ isotype and recognized both human and bovine β 4Gal-T (Fig. 1). However, except for UCLgt1H11, the detection of reactivity with bovine β 4Gal-T was only evident if the ELISA reaction was allowed to proceed overnight. This was still considered a valid reaction because non-specific binding observed with a isotype-matched control mAb remained at background levels. Each of the mAbs recognized bovine β 4Gal-T to different extents but showed no reactivity with either IgG or a-lactalbumin [Fig. 1(b)], proteins which are often present in low amounts in commercially available β 4Gal-T [28]. All the mAbs were also able to detect denatured human (Fig. 2) and bovine (not shown) β 4Gal-T following SDS-PAGE and transfer to nitrocellulose membranes, recognizing a broad band between 47 and 54 kDa.

Influence of carbohydrate structures on antibody binding.—Each of the anti- β 4Gal-T1 mAbs was able to detect non-glycosylated *E. coli*-expressed soluble rh β 4Gal-T1. Two major bands of 36 and 34kDa were detected in Western blots in agreement with the size of the recombinant protein (not shown).

Endo H-mediated cleavage of the N-glycans from purified rh β 4Gal-T1 from S. cerevisiae [3]

resulted in a gel shift from a high molecular diffuse band (of approximately $100-200\,\mathrm{kDa}$) to a major band at 51 kDa and two bands at 43 and $42\,\mathrm{kDa}$ [Fig. 2(a)]. Except for GT2/36/118, the anti- β 4Gal-T1 mAbs reacted equally well with the rh β 4Gal-T1 before and after treatment with Endo H [Fig. 2(b), lanes 2 and 3], again suggesting that the carbohydrate structures were not involved in the epitopes recognized by these mAbs. Periodate oxidation of β 4Gal-T also did not result in decreased binding of the mAb, confirming that the mAbs recognize

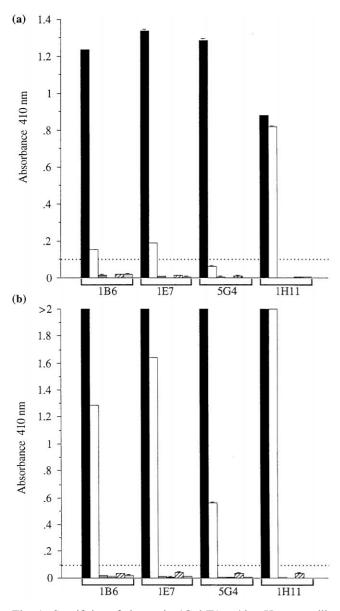


Fig. 1. Specificity of the anti- β 4Gal-T1 mAbs. Human milk β 4Gal-T (\blacksquare); bovine milk β 4Gal-T (\square); human α -lactalbumin (\blacksquare); bovine α -lactalbumin (\blacksquare); human IgG (\boxtimes) or BSA (\square) were coated onto ELISA plates at $5 \mu g/mL$. The ELISA substrate reaction was allowed to proceed for (a) 1 h or (b) 16 h. One standard error of the mean is indicated.

protein epitopes (not shown). Binding of mAb GT2/36/118 to $\text{rh}\beta 4\text{Gal-T1}$ from *S. cerevisiae* is inhibited in the presence of the large *N*-glycans present on this material, but is able to bind following endo-H treatment of the enzyme. A number of low molecular weight bands (approximately 30 and 14.3 kDa) in the $\beta 4\text{Gal-T}$ preparations were detected only with the UCLgt1H11 mAb [Fig. 2(b)]. These were most likely degradation products of $\beta 4\text{Gal-T}$ still containing the epitope uniquely recognized by UCLgt1H11.

Cellular localization of the epitopes recognized.— Each of the mAbs gave a pattern of staining consistent with the Golgi localization of β 4Gal-T using immunofluorescence on fixed and permeabilized B cells [Fig. 3(a)]. The staining intensity achieved was similar for UCLgt1B6, UCLgt1E7 and UCLgt5G4 mAbs but weaker with the UCLgt1H11 mAb, possibly indicating a less accessible epitope and/or poor binding affinity to β 4Gal-T in situ. The over-

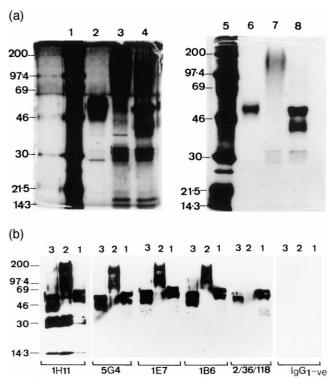
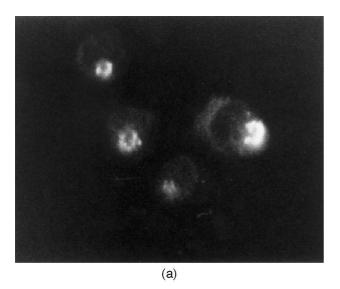



Fig. 2. Western blot of endo-H treated β 4Gal-T. 10% SDS-PAGE gel under reducing conditions. (a) Gel stained with silver (lanes 1–4) or Coomassie blue (lanes 5–8). Molecular weight markers in kDa (lanes 1 and 5); human milk β 4Gal-T (lanes 2 and 6); rh β 4Gal-T1 from *S. cerevisiae* with (lanes 4 and 8) and without Endo H treatment (lanes 3 and 7). (b) ECL detection of Western blot probed with anti- β 4Gal-T mAbs. Each lane contains 1 μ g of either purified human milk β 4Gal-T (lane 1); rh β 4Gal-T1 from *S. cerevisiae* (lane 2) or endo-H treated rh β 4Gal-T1 from *S. cerevisiae* (lane 3).

expression of $rh\beta 4Gal-T1$ in COS-7 cells resulted in some $\beta 4Gal-T$ localized at the cell surface [Fig. 3(b)]. In all of these experiments the isotypematched control mAb failed to stain the cells.

Binding kinetics.—Surface plasmon resonance (SPR) was used to monitor the association (k_{ass}) and dissociation (k_{diss}) rate constants of immobilized mAb with soluble rhβ4Gal-T over real time (Fig. 4). The k_{diss} data for human milk β4Gal-T and Endo H-treated rhGalT1 (Table 1) fitted best when using a two-site binding model where the majority (>85%) of the sites had slow dissociation rate constants (in the 10^{-4} s⁻¹ range). The mAbs

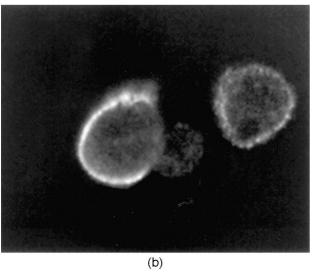


Fig. 3. Cellular localization of β 4Gal-T. Immunofluorescence staining with UCLgt1E7 mAb and rabbit F(ab')₂ anti-mouse IgG-FITC. Cells were mounted onto glass slides and photographed under UV light. (a) Fixed and permeabilized EBV-transformed B cell line 2B6. (b) Plasma membrane staining of non-permeabilized COS-7 cells transfected with β 4Gal-T1 cDNA in pcDNA3.

were all of moderate affinity (apparent binding constant, $K_{\rm B}$, approximately $10^8~{\rm M}^{-1}$) when interacting with the immunogen, human milk β 4Gal-T (Table 1). The $rh\beta 4Gal-T1$ preparations and bovine milk β 4Gal-T all exhibited lower affinities $(K_{\rm B} \text{ approximately } 10^7 \, {\rm M}^{-1})$ with the mAbs when compared to human milk \(\beta 4\)Gal-T. These lower apparent binding constants were most frequently attributable to larger changes in the k_{diss} rates rather than to changes in the k_{ass} . UCLgt1E7 and UCLgt5G4 mAbs had apparent k_{ass} and k_{diss} rate constants which were very similar to each other when tested against all the different types of β 4Gal-T. The K_B values for the mAbs were always in a similar range for each of the β 4Gal-T proteins assayed.

Ligation of β4Gal-T by UCLgt1E7 enhances enzyme activity.—Any attempt to assess the influence on enzyme activity of antibody binding to β4Gal-T could be complicated if the antibody possesses exposed GlcNAc residues which might theoretically act as a competitive substrate for β 4Gal-T in the activity assay. Thus, before carrying out this experiment the mAbs were checked for exposed GlcNAc residues using the biotinylated lectins Bandeiraea simplicifolia II (to detect terminal GlcNAc) and Ricinus communis agglutinin (to detect galactose). The UCLgt1E7 mAb was the only one which lacked exposed GlcNAc, and was therefore the only anti- β 4Gal-T1 mAb considered appropriate for this experiment. Only extremely low levels of exposed GlcNAc were detected on the MOPC-21 antibody used as an isotype-matched negative control. The UCLgt1E7 mAb produced a 45% enhancement in enzyme activity when 1 nmol/ $100 \,\mu\text{L/h}$ of β 4Gal-T was used (Fig. 5). In contrast, and despite a lack of exposed GlcNAc, the isotype control antibody unexpectedly showed up to 30% inhibition of β 4Gal-T activity with this concentration of enzyme (Fig. 5).

Both the stem region and catalytic domain bear immunogenic epitopes.—UCLgt1B6, UCLgt1E7 and UCLgt5G4 strongly (>95%) inhibited binding of each other to human milk β 4Gal-T (Fig. 6), suggesting that the epitope(s) they recognize are closely associated. In contrast, UCLgt1H11 interacted with a distinct epitope, as \leq 10% inhibition of binding was observed in the presence of the other mAbs using either human or bovine β 4Gal-T (Fig. 6). The binding of biotinylated UCLgt1B6, UCLgt1E7 and UCLgt5G4 mAbs to β 4Gal-T was inhibited by about 20–25% in the presence of

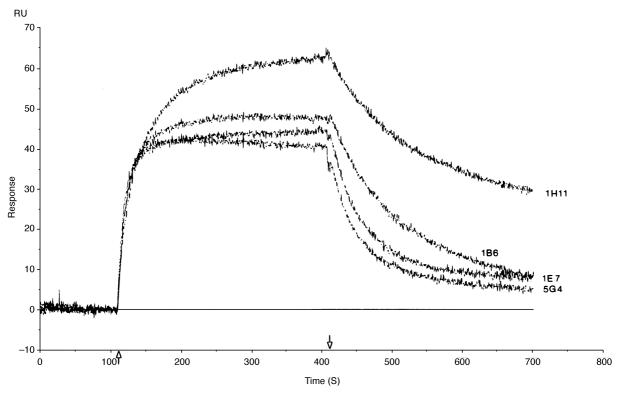


Fig. 4. BIAcore analysis of antibody binding. An overlay of four separate sensorgrams showing immobilized anti- β 4Gal-T1 mAbs interacting with soluble rh β 4Gal-T1. The rh β 4Gal-T1 was injected (between the two arrows) and associated with the mAb, then the rh β 4Gal-T1 injection was replaced with buffer (downward arrow) and the dissociation rates of mAb-rh β 4Gal-T1 complexes measured.

Table 1 k_{ass} and k_{diss} of the mAbs for their respective epitopes

	UCLgt1B6	UCLgt1E7	UCLgt5G4	UCLgt1H11
ıβ4Gal-T				
ass	7.12×10^4	6.09×10^4	7.05×10^4	3.21×10^{4}
diss	5.7×10^{-4}	2.9×10^{-4}	4.3×10^{-4}	4.7×10^{-4}
$K_{ m B}$	1.25×10^{8}	2.1×10^{8}	1.64×10^{8}	6.83×10^7
hβ4Gal-T1				
ass	1.01×10^{5}	1.45×10^{5}	2.35×10^{5}	4.27×10^4
diss	1.18×10^{-2}	2.22×10^{-2}	3.64×10^{-2}	7.24×10^{-3}
$K_{ m B}$	8.56×10^{6}	6.53×10^{6}	6.46×10^6	5.9×10^{6}
hβ4Gal-T1ª				
ass	nf	nf	nf	nf
diss	7.77×10^{-4}	3.23×10^{-4}	7.25×10^{-5}	4.95×10^{-4}
hβ4Gal-T1 ^b				
ass	4.14×10^{4}	3.64×10^{4}	4.62×10^{4}	1.07×10^4
diss	6.08×10^{-3}	1×10^{-2}	1.13×10^{-2}	1.31×10^{-3}
$K_{ m B}$	6.81×10^{6}	3.64×10^{6}	4.09×10^{6}	8.17×10^{6}
β4Gal-T				
ass	3.84×10^{4}	3.67×10^4	4.03×10^4	1.53×10^4
diss	1.59×10^{-3}	2.75×10^{-3}	3.05×10^{-3}	8.62×10^{-4}
K _B	2.42×10^{7}	1.33×10^{7}	1.32×10^{7}	1.77×10^{7}

Summary of anti- β 4Gal-T1 mAbs apparent association (k_{ass} , M^{-1} s⁻¹) and dissociation (k_{diss} , s⁻¹) rates with different β 4Gal-T preparations. The apparent binding constant (K_B , M^{-1}) indicates the relative affinity of the mAbs. Human milk β 4Gal-T (h β 4Gal-T), recombinant human β 4Gal-T1 expressed in *S. cerevisiae* (rh β 4Gal-T1), rh β 4Gal-T1 treated with Endo H (α rh β 4Gal-T1), rh β 4Gal-T1 that has been mutated to remove the *N*-glycosylation site (α rh β 4Gal-T1) and bovine milk β 4Gal-T (b β 4Gal-T). nf, data could not be fitted.

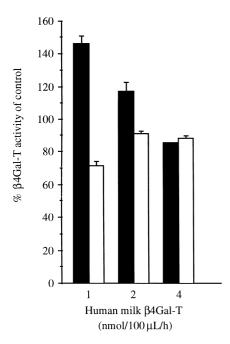


Fig. 5. Effect of anti- β 4Gal-T1 antibody on enzyme activity. β 4Gal-T activity in the presence of UCLgt1E7 mAb (50 μ g/mL, black bars) or an irrelevant isotype control MOPC-21 mAb (50 μ g/mL, white bars). The "control" β 4Gal-T activity (assigned 100%) was measured in the absence of any mAbs. Error bars indicate one standard error of the mean for duplicate samples. The figure is a representative example of three separate experiments.

unlabelled UCLgt1H11 mAb. Synergistic binding to β 4Gal-T was observed when biotinylated anti- β 4Gal-T1 mAbs UCLgt1B6 and UCLgt1H11 were jointly bound to the streptavidin-coated ELISA plates (Fig. 7).

Cleveland digests of purified human milk β 4Gal-T were performed, transferred onto PVDF membranes and probed with the mAbs. Consistent band patterns of β 4Gal-T were generated following several independent digests with V8 protease with characteristic binding patterns for each of the anti- β 4Gal-T1 mAbs tested (UCLgt1E7, UCLgt1H11 and GT2/36/118), again suggesting non-identity of the epitopes recognized (data not shown).

 β 4Gal-T1 mutant proteins expressed in *E. coli* were used in a direct binding ELISA to further define the epitope regions recognized (Fig. 8). The anti- β 4Gal-T1 mAbs were raised against the soluble form of human milk β 4Gal-T (amino acids 42–400). UCLgt1H11 mAb binding was unaffected by the different β 4Gal-T1 deletion mutants. Thus the first 115 amino acids in β 4Gal-T1 are not involved in the epitope recognized which therefore most likely lies within the catalytic domain of the enzyme. UCLgt1H11 also bound to the TSSS

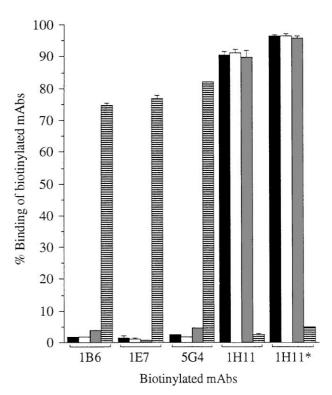


Fig. 6. Epitope mapping. Competition ELISA of biotinylated anti- β 4Gal-T1 mAbs binding to human milk β 4Gal-T in the presence of unlabelled anti- β 4Gal-T1 mAbs UCLgt1B6 (\blacksquare); UCLgt1E7 (\square), UCLgt5G4 (\blacksquare) and; UCLgt1H11 (\boxminus). UCLgt1H11 was additionally assayed against bovine milk β 4Gal-T*. 100% binding for each biotinylated mAb represents binding in the absence of other mAbs. Error bars indicate one standard error of the mean for duplicate samples. The figure is a representative example of three separate experiments.

mutant which involved a loss of negative charge a few amino acids downstream from a hydrophobic pocket, the proposed UDP-galactose binding site [10]. The mAb UCLgt5G4 showed very little binding to any of the mutant proteins, suggesting the epitope recognized lies in the stem region between amino acids 42 and 77. The UCLgt1E7 mab did not show substantial binding to either of the deletion mutants bearing wild-type sequence, but did show a low level of reactivity with the TSSS mutant. UCLgt1B6 showed weak binding to the deletion mutants, and an intermediate level of binding to the TSSS mutant, suggesting some amino acids absent in the mutants partially contribute to the epitope recognized by UCLgt1B6. No cross-reaction to bovine β 4Gal-T was seen with GT2/36/118 mAb. This mAb therefore recognizes an epitope which is entirely different to that recognized by UCLgt5G4 but also maps to amino acids 42–77 within the stem region (Fig. 9).

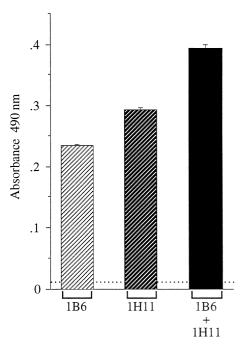


Fig. 7. Synergistic binding of monoclonal antibodies. Biotinylated anti- β 4Gal-T1 mAbs UCLgt1B6 (, 2.5 μ g/mL), UCLgt1H11 (, each at 1.25 μ g/mL) were bound onto streptavidin-coated ELISA plates. Captured human milk β 4Gal-T (15 μ g/mL) was detected with an affinity-purified rabbit anti- β 4Gal-T protein antibody. Non-specific binding with an irrelevant biotinylated isotype control mAb (2.5 μ g/mL, dotted line). Error bars indicate one standard error of the mean for duplicate samples. The figure is a representative example of three separate experiments.

3. Discussion

Monoclonal antibodies against normal human β4Gal-T [29] and against an ovarian tumor-associated human β 4Gal-T [30] have been previously described, as have mAbs against rat [31] and bovine [32] β 4Gal-T. Such antibodies can be used for detecting the enzyme on membrane surfaces or in solution, for isolation of the enzyme, and potentially used to differentiate between different members of the β 4Gal-T family. The four antihuman β 4Gal-T1 mAbs generated for the present study were protein-specific. Furthermore, the large N-glycans on rh β 4Gal-T1 expressed in S. cerevisiae were shown to have no effect on the binding of these mabs although they did interfere with the binding of a previously generated mAb, GT2/36/118. The single N-linked glycosylation site in β 4Gal-T1 is located in the stem region, the most heterogeneous region in β 4Gal-T1 between species. The fact that GT2/36/118 did not cross-react with bovine β 4Gal-T, which has two N-linked glycosylation sites, and

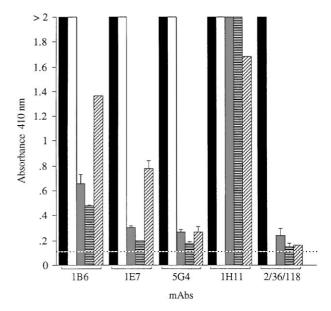


Fig. 8. Localization of epitopes using β 4Gal-T1 mutants. Reactivity of the mAbs with the truncated and mutant proteins in an ELISA using human milk β 4Gal-T (\blacksquare); bovine milk β 4Gal-T (\square); rh β 4Gal-T1 produced in *E. coli* with *N*-terminal deletions rh β 4Gal-T1⁷⁸ (\blacksquare); rh β 4Gal-T1¹¹⁶ (\blacksquare) and a quartet mutant of rh β 4Gal-T1⁷⁸ TSSS (\square). The readings obtained were after 16 h development, with the background value indicated by the dotted line. Error bars indicate one standard error of the mean for duplicate samples. The figure is a representative example of three separate experiments.

was precluded from binding to heavily glycosylated $rh\beta 4Gal-T1$, suggests the oligosaccharides were masking the epitope recognized by this antibody.

All four of the newly generated anti-human β4Gal-T1 mAbs also recognized bovine milk β4Gal-T, which shares an overall 89% sequence homology with the human enzyme. However, only UCLgt1H11 did so to a similar extent as seen with the human immunogen, suggesting the epitopes recognized by the other three mAbs are similar but non-identical between the two species. Cross-inhibition studies clearly indicated that the epitope recognized by UCLgt1H11 was distinct from those recognized by the other mAbs. The 20-25% inhibition exhibited by UCLgt1H11 on the other mAbs may have been due to a slight steric hindrance or a conformational change following UCLgt1H11 interaction. Western blots of \(\beta 4 \text{Gal-T} \) from denaturing gels were still recognized by all the mAbs, suggesting that the relevant epitopes include linear amino acid sequences. It is possible, however, that limited renaturation of the protein had occurred following transfer onto nitrocellulose. The binding of UCLgt1H11 was unaffected by the deletion of the first 115 amino acids in β 4Gal-T1, whereas

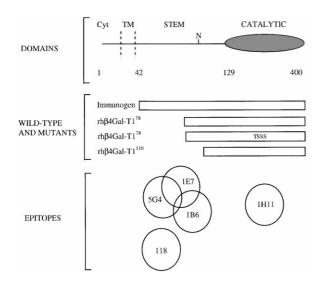


Fig. 9. Diagrammatic representation of the wild-type and mutant β 4Gal-T1 constructs. The top panel indicates the domain structure of β 4Gal-T1. Soluble human milk β 4Gal-T used for the immunization comprises amino acids 42–400 and therefore lacks the transmembrane (TM) and cytoplasmic (Cyt) domains. Residue Cys¹²⁹ marks the boundary between the stem region and the catalytic domain. The middle panel represents the deletion mutants which comprise amino acids 78–400 and 116–400. The bottom panel indicates the approximate location of the β 4Gal-T1 epitopes defined in the present study (not to scale). GT2/36/118 recognizes an epitope which maps to the same region as UCLgt5G4, 1E7 and 1B6, but unlike these mAbs it fails to bind glycosylated bovine Gal-T. The position of the N-linked oligosaccharide (N) at Asn¹¹² is indicated.

GT2/36/118 and UCLgt5G4 failed to recognize any of the mutants. UCLgt1E7 exhibited a similar binding as UCLgt5G4 to the β4Gal-T1 mutants except with rhGalT⁷⁸ TSSS which UCLgt5G4 did not recognize. These results suggest that human β4Gal-T1 bears immunogenic epitopes between amino acids 42–115 which are recognized by GT2/ 36/118, UCLgt5G4 and UCLgt1E7, with the epitope recognized by UCLgt1E7 possibly biased towards the carboxyl end of this domain. UCLgt1B6 showed a degree of reactivity with truncated enzyme. Taken together with the crossinhibition results, UCLgt1B6 appears to detect an epitope partially overlapping with the region recognized by the UCLgt5G4 and UCLgt1E7 but extending C-terminal to amino acid 116. Thus, human β 4Gal-T1 bears an epitope cluster composed of a number of non-identical, though overlapping immunogenic epitopes recognized by UCLgt5G4, UCLgt1E7, UCLgt1B6 and GT2/36/ 118. That four of the five mAbs tested recognized epitopes within the stem region accords with previous observations in which a fusion protein of β -galactosidase with truncated β 4Gal-T1 (lacking amino acids 1–201) was much less immunogenic than a similar fusion protein containing most of the stem region (lacking only amino acids 1–59) [33]. It is known that the degree of sequence homology between the human and bovine enzymes is higher in the catalytic domain than in the stem region. The spatially distinct epitope recognized by UCLgt1H11 (Fig. 9) is likely to be identical or near identical in human and bovine milk β 4Gal-T as the reactivity of this antibody with these two antigens was indistinguishable.

UCLgt1E7 was found to enhance β4Gal-T activity at low concentrations of β 4Gal-T, perhaps by stabilizing the orientation of β 4Gal-T1 and thereby enhancing its catalytic activity. The reason for the observed inhibition with the isotype control was unclear as this mAb did not recognize β 4Gal-T, neither were there significant amounts of exposed GlcNAc residues on this mAb which could act as a competitive substrate. It is possible that the mAb was interacting with another component of the β 4Gal-T activity assay, such as the acceptor substrate. Using crude hybridoma supernatants, a slight enhancement of β 4Gal-T activity by antihuman β 4Gal-T mAbs (including GT2/36/118) has previously been observed [29]. Other mAbs, raised against bovine milk β 4Gal-T, did not affect β 4Gal-T activity [32]. It could be of interest to investigate further the differences in the glycosylation status of the anti- β 4Gal-T1 mAbs if they are shown to recognize murine β 4Gal-T. All but one of the mAbs possessed readily detectable levels of exposed GlcNAc and it is possible that interaction with β 4Gal-T1 or other β 4Gal-Ts as the mAbs transit the hybridoma Golgi prevents efficient galactosylation of the antibodies. It has previously been shown using microinjection of mRNA encoding the heavy and light chain of an anti-Golgi mAb that the presence of specific antibody in the Golgi can interfere with protein transport [34].

The highest affinity binding constants, measured by SPR, for all the anti- β 4Gal-T1 mAbs were observed with human milk β 4Gal-T ($10^8 \,\mathrm{M}^{-1}$) followed by bovine milk β 4Gal-T ($10^7 \,\mathrm{M}^{-1}$) and then rh β 4Gal-T1 (with or without *N*-glycosylation, $10^6 \,\mathrm{M}^{-1}$ – $10^7 \,\mathrm{M}^{-1}$). In some instances, similar $K_{\rm B}$ were observed between the anti- β 4Gal-T1 mAbs, such as the binding of UCLgt5G4 and UCLgt1H11 to rh β 4Gal-T1, yet there were fivefold differences in their $k_{\rm ass}$ and $k_{\rm diss}$ values. The change in $K_{\rm B}$ among the mAbs were due primarily to increased $k_{\rm diss}$ rates. Although broadly similar

characteristics have been reported for ${\rm rh}\beta 4{\rm Gal}\text{-}{\rm T1}$ protein and human milk $\beta 4{\rm Gal}\text{-}{\rm T}$ [3], there is a 2.5–3-fold increase in $K_{\rm m}$ for GlcNAc and a 50% decrease in the $K_{\rm m}$ for glucose (in the presence of 1 mg/mL α -lactalbumin) with ${\rm rh}\beta 4{\rm Gal}\text{-}{\rm T1}$, suggesting that subtle changes in the folding of $\beta 4{\rm Gal}$ -T1 were slightly affecting the acceptor binding domains. Such differences along with a modest shift in circular dichroic spectra in N-deglycosylated $\beta 4{\rm Gal}\text{-}{\rm T1}$ compared to the human milk $\beta 4{\rm Gal}\text{-}{\rm T1}$ [3] may have influenced the high $k_{\rm diss}$ observed with the anti- $\beta 4{\rm Gal}\text{-}{\rm T1}$ mAbs.

The recent cloning of additional β 4Gal-T enzymes [6,7] suggests that many previous studies which refer to " β 1,4 galactosyltransferase" will need to be interpreted carefully. We have referred to the mAbs used in the present study as anti- β 4Gal-T1 because, although they were raised to soluble human milk β1,4 galactosyltransferase, we have demonstrated that they react with recombinant β 4Gal-T1. We do not yet know if they are specific only for β 4Gal-T1, or if the epitopes recognized are present on any other members of the β 4Gal-T family. With respect to the catalytic domain specific UCLgt1H11 it is possible that this antibody may react with the other recently cloned β4Gal-T enzymes which, between amino acids 116– 400, show 52% (β 4Gal-T2), 41% (β 4Gal-T3) and 45% (β4Gal-T4) homology to β4Gal-T1. However, it would seem extremely unlikely that the epitopes defined in the stem region of β 4Gal-T1 would also be present on either β 4Gal-T2 or β 4Gal-T3 as these enzyme share no sequence homology with amino acids 42–77 of the β 4Gal-T1 sequence (the area to which UCLgt5G4 and GT2/36/118 have been mapped). Thus, these mAbs are likely to distinguish the "classical" β4Gal-T (β4Gal-T1) from the newly described \(\beta 4 \text{Gal-T2}\) and \(\beta 4 \text{Gal-T3}\) members of the β 4Gal-T family. With respect to β 4Gal-T4, although this enzyme shows an overall sequence homology of 37% with β 4Gal-T1, the stem region homology is only 16% and therefore it is quite possible that the stem region epitopes defined in the present study are also absent in β 4Gal-T4.

4. Experimental

 β 4Gal-T proteins.—Bovine milk β 4Gal-T was obtained from Sigma (Poole, Dorset, UK) and human milk β 4Gal-T was purified as described by Gerber and colleagues [17].

Wild-type (wt) recombinant soluble human β 4Gal-T1 (rh β 4Gal-T1, from amino acid 45 through to the C-terminus), and rh β 4Gal-T1 in which the Asn¹¹² in the single *N*-glycosylation site was mutated to Asp (*N*-aglycosyl rh β 4Gal-T1) were expressed in *Saccharomyces cerevisiae* and purified as previously described [3]. Endoglycosidase H treatment of wt rh β 4Gal-T1 was carried out by incubating 1 mU recombinant Endo H (Boehringer Mannheim) per 2 μ g of rh β 4Gal-T1 in 100 mM sodium citrate buffer, pH 5.4, for 2 h at 37 °C.

Bacterially-expressed rh β 4Gal-T1 proteins, including two truncated enzymes, rh β 4Gal-T1⁷⁸ and rh β 4Gal-T1¹¹⁶, whose *N*-terminal amino acids were Thr⁷⁸ and Val¹¹⁶, respectively; and a quartet mutant generated by site-directed mutagenesis a few amino acids downstream from the proposed UDP-galactose binding site, Glu³¹⁵Thr/Asp³¹⁶Ser/Asp³¹⁷Ser/Asp³¹⁸Ser (TSSS), were produced in *E. coli* as previously described [27].

Antibodies.—Affinity purified β4Gal-T-specific rabbit polyclonal antibody raised to a fusion protein consisting of soluble human rhβ4Gal-T1 linked to β -galactosidase, and mAb GT2/36/118 raised to soluble human milk β 4Gal-T, were prepared as previously described [29,33]. For the production of the other mAbs, 6-week old Balb/c mice were also immunized with soluble human milk β 4Gal-T, a form of the enzyme which lacks the cytoplasmic and transmembrane regions (see Fig. 9). The mice were injected subcutaneously with $5 \mu g$ of antigen in Ribi adjuvant, followed 2 weeks later by a second identical injection. A final injection of $15 \mu g$ of antigen in saline was given intravenously after another 2 weeks and spleens removed 3 days later. Fusion between X63-Ag8.653 myeloma cells and the spleen cells was carried out using a simplified polyethylene glycol matrix fusion adapted from the classical method [35]. Following the fusion, cells were cultured at approximately 7×10^5 cells/mL in complete medium [comprising RPMI-1640 with sodium bicarbonate (Sigma R-7580), 15% heat-inactivated Myoclone super plus fetal bovine serum (Life Technologies, Paisley, Renfrewshire, UK), 5% heat-inactivated horse serum (TSH-free, Sigma H-1263), 2 mM Lglutamine (Life Technologies), 1 mM sodium pyruvate (Sigma S-8636), $1 \mu g/mL$ fungizone (Life Technologies), 50 IU penicillin and $50 \mu g/mL$ streptomycin (Life Technologies)] with an equal volume of double strength HAT medium [0.5 mM

hypoxanthine with $80\,\mu\text{M}$ thymidine HT (Sigma H-0137) supplemented with $4\,\mu\text{M}$ aminopterin (Sigma A-5159)]. One hundred μL of cells were plated out into wells containing $100\,\mu\text{L}$ of 10% hybridoma enhancing supplement (HES) of macrophage origin (Sigma H-8142) in HAT medium. The culture medium was changed at 4–7 day intervals. Supernatants were screened for β 4Gal-T binding using either ELISA or RIA and the positive hybridomas cloned twice by limiting dilution. For the second limiting dilution and expansion of clones, the serum in the complete medium was replaced with a serum-free supplement of 1:100 (v/v) Nutridoma (Boehringer Mannheim, Lewes, East Sussex, UK).

Quantification of IgG secretion.—ELISA plates were coated with $100 \,\mu\text{L}$ of sheep $F(ab')_2$ antimouse IgG (Jackson ImmunoResearch Laboratories, West Grove, PA) at $5 \mu g/mL$ in 0.15 M phosphate-buffered saline pH 7.4 (PBS) overnight at 4 °C. Plates were washed four times with PBS containing 0.05% Tween 20 (PBS-T), blocked with 200 µL PBS-1% bovine serum albumin (BSA) for 1 h at 37 °C then washed. One hundred μL of mouse standard serum of pre-determined IgG concentration (The Binding Site, Birmingham, UK) in three-fold dilutions from $3 \mu g/mL$ of IgG or samples diluted in PBS-T was loaded onto the plates and incubated for 1 h at 37 °C. After washing, IgG was quantified using $100 \,\mu\text{L}$ of 1:30 000 sheep F(ab')₂ anti-mouse IgG-alkaline phosphatase (Sigma A-3563) in PBS-T for 1h at 37 °C. The plates were then washed and developed with 100 μL of p-nitrophenyl phosphate (PNPP, Sigma 104–105) at 1 mg/mL in 50 mM bicarbonate buffer pH 9.6, with 2 mM MgCl₂.6H₂O and absorbances read at 410 nm.

Isotyping of the antibodies.—One hundred μL of a 50% saturated ammonium sulfate cut from the hybridoma supernatant, at $5 \mu g/mL$ in PBS-T, was added to human milk $\beta 4Gal$ -T-coated ELISA plates for 2 h at 37 °C and the isotype of the bound antibodies determined using horseradish peroxidase-labeled goat anti-mouse Ig subclass specific antibodies (isotyping kit, Sigma ISO-2) and goat anti-mouse κ or λ light chains (Southern Biotechnologies). After washing, the plates were developed using $100 \mu L$ of 1 mg/mL o-phenylenediamine (OPD) in 0.1 M citrate phosphate buffer, pH 5.0 with 0.03% H₂O₂. The reaction was stopped with $50 \mu L$ 3N H₂SO₄ and absorbances read at 490 nm using a Dynatech MR5000 ELISA plate reader.

Specificity of anti-β4Gal-T1 mAbs.—One hundred µL of Protein G-purified mAbs at 1 µg/mL in PBS were incubated for 1h at 37 °C on ELISA plates coated with 500 ng/well of human milk β 4Gal-T; bovine β 4Gal-T; human α -lactalbumin; bovine α -lactalbumin; human IgG; or BSA. For analysis of the regions of the enzyme which are recognized, 100 µL of total periplasmic fractions from E. coli expressing truncated rh β 4Gal-T1⁷⁸, rhβ4Gal-T1¹¹⁶ or the TSSS mutant were directly coated onto Nunc maxisorp ELISA plates. These crude supernatants contained 15.39, 37.33 and 6.2 ng/mL of rh $\beta 4 \text{Gal-T1}^{78}$, rh $\beta 4 \text{Gal-T1}^{116}$ or the TSSS mutant, respectively. Binding of the mAbs was detected using sheep anti-mouse IgG-alkaline phosphatase as above.

Epitope mapping of anti-β4Gal-T1 mAbs.—The biotinylated were using *N*-hydroxysuccinimide ester biotin [36]. Biotinylated mouse $IgG1\kappa$ MOPC-21 (Sigma M-9269) was used as a non-specific isotype-matched control. One hundred μ L of biotinylated anti- β 4Gal-T1 mAbs at a concentration which gave 50% maximum binding (40– 210 ng/mL depending on the mAb used) were incubated for 2 h at 37 °C on human milk β4Gal-T coated ELISA plates in the presence of unlabelled anti- β 4Gal-T1 mAbs at 10 μ g/mL in PBS-T. Binding of biotinylated mAb was detected using horseradish peroxidase-streptavidin. Results expressed as a percentage of binding, taking 100% binding as the absorbance obtained with biotinylated anti-β4Gal-T1 mAbs in the absence of unlabelled competitor mAbs.

Synergistic binding of β 4Gal-T using pairs of mAbs coated onto ELISA plates was also employed as a means of assessing binding to spatially distinct epitopes. Fifty μL of streptavidin (Sigma S-4762) at $5 \mu g/mL$ was coated overnight at 4 °C, washed four times with PBS-T, then blocked with $100 \,\mu\text{L}$ of PBS-1% BSA for 2h at 37 °C. After washing, one half of the plate was incubated with 50 μ L of biotinylated isotype-matched control MOPC-21 at $5 \mu g/mL$ in PBS, with the other half of the plate incubated with $50 \,\mu\text{L}$ of a mixture of biotinylated anti-β4Gal-T1 mAbs, UCLgt1B6 and UCLgt1H11, each at $2.5 \mu g/mL$ in PBS. Plates were incubated for 2 h at 37 °C and then overnight at 4 °C. Following washing, the plates were incubated with 50 μ L of 15 ng/mL human milk β 4Gal-T. Plates were incubated for 2h at 37 °C, then washed and incubated with $50 \,\mu\text{L}$ affinity-purified rabbit anti-human β 1,4-GalT at $5 \mu g/mL$ in PBS-

T-1% BSA for 1 h at 37 °C. After washing, the plates were incubated with $50\,\mu\text{L}$ of goat F(ab')₂ anti-rabbit IgG-horseradish peroxidase (Jackson ImmunoResearch Laboratories) at 1:2000 in PBS-T-1% BSA for 1 h at 37 °C. Plates were washed and developed as above.

Surface plasmon resonance.—"On rates", "off rates" and binding affinities were determined by surface plasmon resonance (SPR) using BIAcore (Pharmacia Biosensor, Uppsala, Sweden). Briefly, a sensor chip was equilibrated in running buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 3.4 mM EDTA, 0.005% Tween 20) at a constant flow rate of $5 \mu L/min$. The matrix was activated by injecting $80 \,\mu\text{L}$ of a 1:1 mixture of 11.5 mg/mL N-hydroxysuccinimide and 75 mg/mL N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide to enable it to covalently bind free amino groups of proteins. This was followed by a $80 \,\mu L$ injection of a $20 \,\mu g/mL$ solution of polyclonal rabbit anti-mouse IgG1 (Pharmacia) in acetate buffer, pH 4.5. Any remaining unreacted sites were blocked with an injection of 40 µL of 1 M ethanolamine. Mouse antibodies were then captured on the immobilized anti-IgG1 by injection of a $100 \,\mu g/mL$ solution in running buffer. Saturation of all available sites was confirmed by injection of additional antibody until no further increase in the signal was observed. Antigen was then injected over the captured antibodies at a concentration of $0.3 \mu M$. After the end of the protein injection (25 μ L), running buffer resulted in dissociation of bound material, enabling the determination of the dissociation rate constant. The association rate constant could be determined from the sensorgram and the relative affinities of the various antibodies calculated (binding constant $K_{\rm B} = k_{\rm ass}/k_{\rm diss}$). To correct for non-specific binding and drift in the signal, a control run was performed with a non-specific antibody and the response obtained with this control antibody was subtracted from that obtained with specific antibody. Fits of the on and off rate were applied using the corrected data.

β4Gal-T enzyme activity in the presence of antiβ4Gal-T1 mAb.—The enzyme activity assay was performed as previously described [37] using the UCLgt1E7 anti-β4Gal-T1, or an irrelevant isotype control mAb, at $50 \mu g$ /mL in the assay buffer which contained known amounts of β4Gal-T.

Western blotting.—Samples were reduced in Laemmli buffer containing a final concentration of 5% 2-mercaptoethanol, separated on a 10% SDS-PAGE gel, and proteins electrophoretically transferred to a

0.45 µm pore nitrocellulose membrane (NC, Schleicher and Schuell). Free-sites on the blot were blocked with 5% dried skimmed-milk powder in PBS-T 0.2%. Following incubation with primary antibody and with horseradish peroxidase-conjugated secondary antibody, the blots were developed using enhanced chemiluminescence (ECL, Amersham International, UK) followed by exposure to Kodak X-OMAT-AR film.

Cleveland digests.—Twenty five micrograms of purified human milk β 4Gal-T was separated using SDS–PAGE under reducing conditions, the enzyme band excised, and then equilibrated in 125 mM Tris-HCl, pH 6.8, 0.1% SDS, 1 mM EDTA for 30 min. The excised gel bands were then loaded onto a second SDS–PAGE with 10 μ L of V8 protease at 0.5 mg/mL. Following separation of the digested fragments, the gel was blotted onto NC membrane as described above.

Transient transfection with human β 4Gal-T1.—COS-7 cells were transiently transfected with β 4Gal-T1 cDNA (subcloned into the BamH I/Xho I sites of pcDNA3) using a modification of the method of Aruffo et al. [38]. Briefly, cells were transfected for 2 h at 37 °C in transfection medium (10% NuSerum, 250 μ g/mL dextran, 200 μ M chloroquine and 5 μ g/mL DNA), shocked with 10% DMSO for 2 min, then re-cultured in fresh medium and analyzed 48 h post-transfection.

Immunofluorescence.— 2.5×10^5 cells (either the 2B6 EBV-transformed B cell line [39] or the transfected COS-7 cells) were resuspended with 100 μL of test mAb or isotype-matched control mAb at $20 \,\mu\text{g/mL}$ in wash buffer (PBS-0.1% BSA with 15 mM NaN₃) and incubated for 45 min on ice. Following two 1 mL washes, 50μ L of FITC-labelled rabbit F(ab')₂ anti-mouse IgG, diluted 1:10 in wash buffer, was used to resuspend the cell pellet and incubated for 45 min on ice. Cells were washed twice in wash buffer and resuspended in $250 \,\mu\text{L}$ PBS. For intracellular staining, cells were fixed and permeabilized using PermeaFix (Ortho Diagnostic Systems, Buckinghamshire, UK) before being stained. The staining procedure was as described above except that an additional 30 min wash step was included following antibody staining. Stained cells were mounted onto slides using a drop of fluorescence mounting medium (Dako). Bio-Rad MRC600 Confocal microscope images were captured using Biosis software (Bio-Rad) and exported into NIH-Image 1.59 (http://rsb.info.nih.gov/ nih-image/) for processing.

Acknowledgements

The authors thank the Frances and Augustus Newman Foundation for financial support, and Terry Jowett and Alan O'Shea for technical assistance. Part of this work was supported by grant 5002-037904 of the Swiss National Science Foundation (SPP-Biotech) to EGB. Dr. Belinda Kumpel (International Blood Group Reference Laboratory, Bristol, UK) generously provided the 2B6 EBV-transformed B cell line. JK was in receipt of a Medical Research Council UK Ph.D. studentship award.

References

- [1] C.H. Krezdorn, G. Watzele, R.B. Kleene, S.X. Ivanov, and E.G. Berger, *Eur. J. Biochem.*, 212 (1993) 113–120.
- [2] G.F. Herrmann, C. Krezdorn, M. Malissard, R. Kleene, H. Paschold, B.D. Weuster, U. Kragl, E.G. Berger, and C. Wandrey, *Protein Express. Pur.*, 6 (1995) 72–78.
- [3] M. Malissard, L. Borsig, S. Di Marco, M.G. Grutter, U. Kragl, C. Wandrey, and E.G. Berger, *Eur. J. Biochem.*, 239 (1996) 340–348.
- [4] M. Asano, K. Furukawa, M. Kido, S. Matsumoto, Y. Umesaki, N. Kochibe, and Y. Iwakura, *EMBO J.*, 16 (1997) 1850–1857.
- [5] Q. Lu, P. Hasty, and B.D. Shur, *Dev. Biol.*, 181 (1997) 257–267.
- [6] R. Almeida, M. Amado, L. David, S.B. Levery, E.H. Holmes, G. Merkx, A.G. van Kessel, E. Rygaard, H. Hassan, E. Bennett, and H. Clausen, J. Biol. Chem., 272,(1997) 31979–31991.
- [7] T. Sato, K. Furukawa, H. Bakker, D. H. Van den Eijnden, and I. Van Die, *Proc. Natl. Acad. Sci. U.* S. A., 95 (1998) 472–477.
- [8] J. Amano, P. Straehl, E.G. Berger, N. Kochibe, and A. Kobata, J. Biol. Chem., 266 (1991) 11461– 11477.
- [9] D. Aoki, H.E. Appert, D. Johnson, S.S. Wong, and M.N. Fukuda, *Embo. J.*, 9 (1990) 3171–3178.
- [10] S.K. Chatterjee, Int. J. Biochem., 23 (1991) 695– 702
- [11] K. Nakazawa, K. Furukawa, H. Narimatsu, and A. Kobata, *J. Biochem. Tokyo*, 113 (1993) 747–753.
- [12] S.S. Wong, T.E. Malone, and T.K. Lee, *Biochim. Biophys. Acta.*, 745 (1983) 90–96.
- [13] J. Roth and E.G. Berger, *J. Cell Biol.*, 93 (1982) 223–229.
- [14] C. Rabouille, N. Hui, F. Hunte, R. Kieckbusch, E.G. Berger, G. Warren, and T. Nilsson, J. Cell Sci., 108 (1995) 1617–1627.

- [15] C.A. Smith and K. Brew, *J. Biol. Chem.*, 252 (1977) 7294–7299.
- [16] G.J. Strous, CRC Crit. Rev. Biochem., 21 (1986) 119–151.
- [17] A.C. Gerber, I. Kozdrowski, S.R. Wyss, and E.G. Berger, *Eur. J. Biochem.* 93 (1979) 453–460.
- [18] H.E. Appert, T.J. Rutherford, G.E. Tarr, N.R. Thomford, and D.J. McCorquodale, *Biochem. Biophys. Res. Commun.*, 138 (1986) 224–229.
- [19] S.K. Cho and R.D. Cummings, *J. Biol. Chem.* 272 (1997) 13622–13628.
- [20] B.D. Shur, Curr. Opin. Cell Biol. 5 (1993) 854-863.
- [21] K.M. Felner, E. Niederer, and E.G. Berger, *Cytometry* 28 (1997) 50–57.
- [22] B.D. Shur, Glycobiology, 1 (1991) 563-575.
- [23] D.J. Eckstein and B.D. Shur, *J. Cell Biol.*, 108 (1989) 2507–2517.
- [24] D.A. Hinton, S.C. Evans, and B.D. Shur, *Exp. Cell Res.*, 219 (1995) 640–649.
- [25] Q. Huang, B.D. Shur, and P.C. Begovac, *J. Cell Sci.*, 108 (1995) 839–847.
- [26] X. Gong, D.H. Dubois, D.J. Miller, and B.D. Shur, *Science* 269 (1995) 1718–1721.
- [27] H. Zu, M.N. Fukuda, S.S. Wong, Y. Wang, Z. Liu, Q. Tang, and H.E. Appert, *Biochem. Biophys. Res. Commun.*, 206 (1995) 362–369.
- [28] J.C. Paulson and K.J. Colley, *J. Biol. Chem.*, 264 (1989) 17615–17618.
- [29] E.G. Berger, E. Aegerter, T. Mandel, and H.P. Hauri, *Carbohydr. Res.*, 149 (1986) 23–33.
- [30] T. Uejima, M. Uemura, S. Nozawa, and H. Narimatsu, *Cancer Res.*, 52 (1992) 6158–6163.
- [31] J. Kawano, S. Ide, T. Oinuma, and T. Suganuma, J. Histochem. Cytochem., 42 (1994) 363–369.
- [32] J.T. Ulrich, J.R. Schenck, H.G. Rittenhouse, N.L. Shaper, and J.H. Shaper, *J. Biol. Chem.*, 261 (1986) 7975–7981.
- [33] G. Watzele, R. Bachofner, and E. G. Berger, *Eur. J. Cell Biol.*, 56 (1991) 451–458.
- [34] B. Burke and G. Warren, Cell, 36 (1984) 847–856.
- [35] G. Kohler and C. Milstein, *Nature*, 256 (1975) 495–497.
- [36] J.W. Goding, *Monoclonal Antibodies: Principles and Practice*, 2nd ed., Academic Press, London, 1986, pp. 262–266.
- [37] J. Keusch, P.M. Lydyard, D.A. Isenberg, and P.J. Delves, *Glycobiology*, 5 (1995) 365–370.
- [38] A. Aruffo, F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl, *Transient Expression of Proteins Using COS Cells. In: Current Protocols in Molecular Biology*, John Wiley and Sons, New York, 1994, pp. 16, 16.3.1–16.13.7.
- [39] B.M. Kumpel, T.W. Rademacher, G.A. Rook, P.J. Williams, and I.B. Wilson, *Hum. Antibod. Hybrid.*, 5 (1994) 143–151.